
Dose-Response, 12:259–276, 2014
Formerly Nonlinearity in Biology, Toxicology, and Medicine
Copyright © 2014 University of Massachusetts
ISSN: 1559-3258
DOI: 10.2203/dose-response.13-020.Vandenberg

259

NON-MONOTONIC DOSE RESPONSES IN STUDIES OF ENDOCRINE DIS-
RUPTING CHEMICALS: BISPHENOL A AS A CASE STUDY

Laura N. Vandenberg � University of Massachusetts – Amherst

� Non-monotonic dose response curves (NMDRCs) have been demonstrated for natural
hormones and endocrine disrupting chemicals (EDCs) in a variety of biological systems
including cultured cells, whole organ cultures, laboratory animals and human popula-
tions. The mechanisms responsible for these NMDRCs are well known, typically related to
the interactions between the ligand (hormone or EDC) and a hormone receptor.
Although there are hundreds of examples of NMDRCs in the EDC literature, there are
claims that they are not ‘common enough’ to influence the use of high-to-low dose extrap-
olations in risk assessments. Here, we chose bisphenol A (BPA), a well-studied EDC, to
assess the frequency of non-monotonic responses. Our results indicate that NMDRCs are
common in the BPA literature, occurring in greater than 20% of all experiments and in
at least one endpoint in more than 30% of all studies we examined. We also analyzed the
types of endpoints that produce NMDRCs in vitro and factors related to study design that
influence the ability to detect these kinds of responses. Taken together, these results pro-
vide strong evidence for NMDRCs in the EDC literature, specifically for BPA, and question
the current risk assessment practice where ‘safe’ low doses are predicted from high dose
exposures.
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INTRODUCTION

Endocrine disrupting chemicals (EDCs) are a class of chemicals that
interfere in some way with the normal functioning of the endocrine sys-
tem (Zoeller et al., 2012). They include chemicals that can affect the syn-
thesis, secretion, transport, binding or metabolism of hormones, as well
as chemicals that can mimic or block the actions of hormones (Kavlock et
al., 1996). EDCs have recently received extensive attention from the sci-
entific and regulatory communities. In 2013, the World Health
Organization and United Nations Environment Programme updated
their assessment of the science of EDCs, noting that there are a number
of characteristics that should be expected from this class of chemicals
(WHO, 2013). One of these characteristics was the ability of EDCs, like
natural hormones, to produce non-monotonic dose response curves
(NMDRCs). Similar conclusions about the ability of EDCs to produce
NMDRCs have been made by the Endocrine Society, the director of the
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National Institutes of Environmental Health Sciences (NIEHS) and the
National Toxicology Program (NTP), and other scientists (Birnbaum,
2012; Myers et al., 2009b; Vandenberg et al., 2012; Vandenberg et al.,
2013a; Zoeller et al., 2012).

NMDRCs are defined mathematically by a response where the slope
of the curve changes sign from positive to negative, or vice versa, some-
where along the range of doses examined (Kohn and Melnick, 2002).
The simplest way to define a NMDRC is by mathematically or statistically
assessing changes to the sign (negative or positive) of the slope(s) of the
dose response curve. Yet, most studies designed to assess dose responses
do not identify the slope of the curve, nor do they calculate changes in
the sign of the curve to verify non-monotonicity. Instead, there are
numerous other ways that scientists determine whether non-monotonici-
ty is manifested (reviewed in (Do et al., 2012)). NMDRCs are distinct from
another phenomenon that has received significant attention related to
EDCs, i.e. the concept of “low dose effects.” Low dose effects are defined
as any biological changes occurring in the range of typical human expo-
sures, or biological changes that occur at doses below those used in tra-
ditional toxicology studies (Melnick et al., 2002). By definition, low dose
effects make no assumption about the shape of the dose response curve.
There is strong evidence that low dose effects exist and are reproducible
for a number of EDCs (Birnbaum, 2012; Diamanti-Kandarakis et al., 2009;
Melnick et al., 2002; Vandenberg et al., 2012; Vandenberg et al., 2013a;
WHO, 2013; Zoeller et al., 2012).

There are numerous mechanisms that have been described for the
production of NMDRCs following exposure to or treatment with hor-
mones. One well-studied mechanism is cytotoxicity, where increasing
doses of a chemical induce an effect (i.e. cell proliferation) but also
induce toxicity (Welshons et al., 2003). Importantly, there are also exam-
ples where high doses of hormone inhibit cell proliferation – an effect
that is distinct from cytotoxicity or toxicity in general (Sonnenschein et
al., 1989; Soto et al., 1999). Thus, an inverted U-shaped curve can be
observed when two competing monotonic curves overlap to produce an
effect that manifests as a NMDRC – i.e. proliferation versus cell death, or
proliferation versus inhibition of proliferation. Because many of the end-
points that are examined in biological studies are complex, it is not unex-
pected that NMDRCs can manifest due to complex interactions of many
different responses at several levels of biological organization (see for
example Angle et al., 2013; Shioda et al., 2006).

Another well-studied mechanism for non-monotonicity is the effect of
hormone concentration on receptor number (Ismail and Nawaz, 2005;
Nawaz et al., 1999). When the number of receptors being produced does
not equal the number of receptors being degraded, the response can
decrease as the hormone concentration increases (von Zastrow and
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Kobilka, 1994). For some receptors, the response at higher doses is also
affected by desensitization, a process whereby receptors are biochemical-
ly inactivated when hormone concentrations increase (Freedman and
Lefkowitz, 1996; Lohse, 1993). Other mechanisms that produce NMDRCs
include cell and tissue specific receptors and co-factors (Jeyakumar et al.,
2008; Maffini et al., 2008), receptor selectivity (McLachlan et al., 2001;
Sohoni and Sumpter, 1998; Tilghman et al., 2010), receptor competition
(Kohn and Melnick, 2002), and endocrine negative feedback loops
(Bruchovsky et al., 1975; Lesser and Bruchovsky, 1974; Stormshak et al.,
1976).

In addition to the acceptance of NMDRCs by endocrinologists, these
responses are well understood by scientists in fields such as nutrition sci-
ence where it is established that U- and inverted U-shaped curves exist for
a number of nutrients. For example, too much or too little vitamin A is
known to produce dermatitis, dementia and death, thus the optimal
range of vitamin A consumption is in the mid-range. Similarly, NMDRCs
are well understood by pharmacologists and are often referred to as
“flare” (Harvey, 1997; McLeod, 2003). Yet traditional toxicology relies on
the centuries-old dogma that “the dose makes the poison”, and thus high-
er concentrations of a chemical are expected to have larger effects (Myers
et al., 2009b; vom Saal and Myers, 2010; Welshons et al., 2006; Welshons et
al., 2003). In fact, although simplified, this is how regulation of chemicals
is currently conducted: high doses of chemicals are tested to produce
LD50s (the lethal dose at which 50% of the animals die), maximum tol-
erated doses (MTDs, or doses where no unacceptable levels of toxicity are
observed), LOAELs (the lowest observed adverse effect level) and
NOAELs (the no observed adverse effect level). For many chemicals,
including many EDCs, these doses are in the milligram per kilogram body
weight range (Vandenberg et al., 2012). One or more safety factors are
then applied to the NOAEL to calculate a reference dose, which is
assumed to be safe for humans or wildlife. Yet this ‘safe’ dose is rarely test-
ed – based solely on the assumption that there are monotonic relation-
ships between dose and effect, and thus no adverse effects can occur
below the NOAEL. If, however, there are non-monotonic relationships
between dose and effect, this entire high dose testing paradigm is flawed.
Furthermore, if NMDRCs are rare for EDCs and other toxicants then the
premise of high dose testing to extrapolate to low ‘safe’ doses might be a
satisfactory approach for the regulation of these chemicals. However, if
NMDRCs are common, they challenge this status quo.

It has been asserted that NMDRCs are ‘common’ for EDCs – a deter-
mination that was made based on a substantial assessment of the EDC lit-
erature that uncovered NMDRCs for more than 70 EDCs, in cultured
cells, laboratory animals and even human populations (Vandenberg et al.,
2012). Yet this statement was questioned because the frequency of
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NMDRCs in relation to the total number of dose response curves that
have been produced remains unknown (Rhomberg and Goodman,
2012). Studies of the general toxicology literature indicate that NMDRCs
may occur in more than 10% of all dose responses (Davis and
Svendsgaard, 1994); studies specifically focusing on hormetic curves, a
type of NMDRC associated with low dose stimulation and high dose
repression of effects, have reported similar frequencies (Calabrese et al.,
2007).

One EDC, bisphenol A (BPA), has been studied extensively in recent
years, and its ability to produce NMDRCs has been debated. One reason
BPA has received significant attention is its estrogenic activity in vitro and
in vivo (Richter et al., 2007; vom Saal et al., 2007; Wetherill et al., 2007);
BPA was also identified as a high priority chemical in a toxicological
screen performed by the NTP because of its ability to bind to a number
of other receptors (Reif et al., 2010). Human exposure to BPA is wide-
spread (Geens et al., 2012; Vandenberg et al., 2010), and a relatively large
number of epidemiology studies suggest relationships between BPA expo-
sure levels and disease outcomes including cardiovascular disease, dia-
betes, obesity, and abnormal neurobehaviors (Braun and Hauser, 2011;
Vandenberg et al., 2013b). In 2007, an expert panel assembled by NIEHS
concluded that there was strong evidence that BPA can produce
NMDRCs (Wetherill et al., 2007); however, that group did not attempt to
quantify the frequency of NMDRCs in the BPA literature. To begin to
address this issue, a pilot study was performed to determine the frequen-
cy of NMDRCs in a subset of the EDC literature, specifically in vitro stud-
ies of BPA. BPA was selected because of the large number of available
studies; several hundred have been conducted in the past decade alone.
Here, 109 in vitro studies were examined and the shapes of the dose
response curves in the 388 experiments within these studies were charac-
terized. The results of this pilot study indicate that NMDRCs are, in fact,
common, and that factors associated with experimental design may influ-
ence the ability to observe these responses.

METHODS

Identification of in vitro BPA studies

A previous review of the BPA in vitro literature concluded that there
was strong evidence for NMDRCs (Wetherill et al., 2007). We identified all
in vitro studies that had been conducted since that publication using the
search engine PubMed and the search terms “bisphenol A” or “BPA”.
Each study was visually inspected to determine whether it included in vitro
experiments. Only complete studies were included; several abstracts were
removed from the database due to lack of experimental detail. Only stud-
ies published in English were included.
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All studies were added to a single database, regardless of the number
of doses examined or any other study characteristics. Information
inputted from the published studies included: the cell line or cell type
that was used, the origin (species) of those cells, the endpoint assessed,
the lowest observed effective concentration (LOEC), all doses that were
tested, and which doses were found to be significantly different from con-
trols according to the study authors. Additional information was deter-
mined based on what was reported in the publication: the total number
of doses tested, the number of log doses tested, the log span of the range
of the doses tested, and the presence of NMDRCs.

Determination of non-monotonicity

Non-monotonicity is defined as a response with a change in the sign
of the slope over the dose range tested. We did not identify a single study
that calculated the slopes of dose response curves. Instead, we used the
following criteria:

1. Visual inspection of the curve, especially when no statistics had been
performed for specific doses.

2. Statistical analysis in the manuscript indicates that lower doses pro-
duce significant effects compared to untreated controls, but higher
doses do not.

3. Statistical analysis indicates that lower doses produce an increase in
response compared to untreated controls and high doses produce a
decrease in response compared to untreated controls, or vice versa.

4. Visual inspection suggests a U- or inverted U-shaped curve is present
and statistical analysis indicates that higher doses are significantly dif-
ferent from the response at lower doses, regardless of whether the re-
sponse at the higher doses is significantly different from what occurs
in untreated controls.

Analysis of monotonic and non-monotonic curves

109 in vitro BPA studies were identified as published between
April/May 2007 (when the previous review of the in vitro literature was
published) and April 2013. Studies were eliminated from further analysis
if they examined only a single dose, or examined only those endpoints
that were unaffected by BPA at any concentration. Of the remaining stud-
ies, the total number of doses were counted in each experiment and com-
pared between endpoints reporting NMDRCs and those reporting
monotonic response curves using a student’s T-test. To account for the
fact that some studies examine a large number of doses over a relatively
small span of concentrations (1-2 log M), the number of log doses tested was
determined for each experiment and compared between endpoints
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reporting NMDRCs and those reporting monotonic response curves
using a student’s T-test. Finally, because some studies examine doses over
a large span of concentrations (5 or more log M) but with gaps in the con-
centrations studied (i.e. testing 10-14 M and 10-12 M – two doses that span
3 log M), the log range of doses tested was determined for each experiment
and compared between endpoints reporting NMDRCs and those report-
ing monotonic response curves using a student’s T-test.

Each study was examined and if any endpoint displayed non-monoto-
nicity according to the criteria listed above, the study was considered ‘pos-
itive’ for NMDRCs. The frequency of studies with NMDRCs was calculat-
ed by dividing the number of positive studies by the total number of stud-
ies.

Each experiment (examining a single endpoint) was also examined
and if the experiment displayed non-monotonicity according to the cri-
teria listed above, the experiment was considered ‘positive’ for NMDRCs.
The frequency of experiments with NMDRCs was calculated by dividing
the number of positive experiments by the total number of experiments.

Finally, to determine whether the number of doses, log doses or
range of doses influenced the conclusions reached about non-monoto-
nicity, Chi Square tests were compared between the entire dataset (250
experiments) and subsets of the dataset (i.e. studies only examining ‘n’
number of doses) where the frequency of non-monotonicity observed in
the entire dataset was the ‘expected’ frequency and the frequency
observed in the subset was the ‘observed’ frequency. For all comparisons,
results were considered significant at p<0.05.

Analysis of Endpoints

For each study and each experiment, the endpoint that was examined
was recorded. To determine whether certain endpoints were more likely
to demonstrate NMDRCs, endpoints that were examined in multiple
studies were identified and analyzed for the frequency of NMDRCs.

RESULTS

A database of in vitro studies of BPA: 2007-2013

We began by creating a database of all in vitro studies of BPA that had
been published since the 2007 Chapel Hill expert panel review of the in
vitro literature (Wetherill et al., 2007). A total of 109 studies were identi-
fied with 388 experiments (Supplemental Table 1). These studies were
examined individually, and any studies that only examined single doses in
all experiments were removed, as single doses are incapable of providing
information about the shape of the dose response curve. Also, studies
that showed no effect of BPA on any endpoint examined were removed.
Thus, a total of 93 studies with 250 experiments providing dose response
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data were retained in the final dataset. Figure 1 shows the characteristics
of these 250 experiments.

NMDRCs are common in the BPA in vitro literature

Once the 250 appropriate dose response experiments were identified,
they were examined visually and the statistics performed by the original
study authors were studied to determine whether each experiment met
the criteria for non-monotonicity. Including those experiments that had
not performed statistical analyses – and thus relying solely on the visual
appearance of the dose response curve – a total of 59 experiments dis-
played NMDRCs, a total of 23.6%. Similarly, we examined the 93 studies
that included at least one dose response experiment and asked whether
a NMDRC was reported for any endpoint within that study. 32 studies
(34.4%) included at least one experiment with a NMDRC.

To ensure that the visual inspection of studies did not influence the
interpretation of non-monotonicity, we removed from the dataset any
studies that did not include statistical analyses comparing the individual
doses to the untreated control group. Following this exclusion, a total of
229 experiments were included, of which 53 fit the criteria for non-
monotonicity (23.1%). From these analyses, it is clear that NMDRCs are
widespread within this subset of the BPA in vitro literature.

Studies that report NMDRCs examine more doses, over wider ranges, than
studies that do not

To determine whether factors associated with study design were asso-
ciated with the detection of NMDRCs, we compared three measures in
experiments with non-monotonic responses and experiments with
monotonic responses. Experiments reporting NMDRCs examined on
average 6.9 doses, whereas experiments that failed to detect NMDRCs
examined only 4.6 doses (Figure 2A). Following a correction for studies
that examined multiple doses within a small range of concentrations, we
observed that experiments reporting NMDRCs examined an average of
5.6 log doses, whereas experiments that failed to detect NMDRCs exam-
ined on average only 3.9 log doses (Figure 2B). Finally, considering that
many studies examined a small number of doses over a large range, we
found that studies reporting NMDRCs included doses spanning 6.1 log
M, whereas experiments that failed to detect NMDRCs included doses
spanning only 4.5 log M (Figure 2C).

We also determined whether study size affected the probability of
detecting a non-monotonic response. We examined the same three fac-
tors (number of doses, number of log doses, and span of log doses) and
assessed the probability that a study with a particular design would display
NMDRCs. In the total dataset, 23.6% of studies had NMDRCs. Smaller
studies (those that examined only 2 doses, 2 log doses, or doses that only
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FIGURE 1. Characteristics of the 250 experiments identified for additional analyses. A) Graph illus-
trating the breakdown of the number of doses examined in these studies. The majority of studies
examined only 2, 3 or 4 different concentrations of BPA. B) Graph illustrating the number of differ-
ent log doses examined in these studies. This graph shows that the majority of studies examined
doses from 2, 3 or 4 log M. C) Graph illustrating the span of log doses from the highest to lowest con-
centrations examined in these studies. Most studies examined doses that spanned 2-5 log M. 
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FIGURE 2. Comparisons of characteristics in experiments that report NMDRCs versus those that
report monotonic responses. A) Comparisons of the number of doses examined. B) Comparisons of
the number of different log doses examined. C) Comparisons of the span of log doses examined. All
graphs represent means ± SEM, *p<0.05, T-test. 



spanned 2 log M) were significantly less likely to report non-monotonic
responses. Large studies (those that examined 7-10+ doses, or a wide log
range) were significantly more likely to report non-monotonic responses
(Figure 3). Collectively, these results are consistent with the conclusion
that the inclusion of more doses in a study increases the ability to detect
NMDRCs, and that studies that only examine a few doses over a small con-
centration range are more likely to report that an endpoint has a monot-
onic response.

NMDRCs occur for many different endpoints

A number of different endpoints manifesting at the subcellular and
cellular levels of biological organization demonstrated NMDRCs. These
responses were observed in the expression of certain genes and proteins,
in the secretion of hormones and other substances, in chromosomal
abnormalities, in cell proliferation and viability, in the phosphorylation
of target proteins, in several types of mitochondrial responses, and in the
accumulation of lipids (Supplemental Table 1).

Previous discussions of the non-monotonicity literature have suggest-
ed that NMDRCs are not reproducible, and therefore are not a concern
(Rhomberg and Goodman, 2012). To assess this conclusion, we identified
studies that examined the same or similar endpoints. In one analysis, we
examined 28 experiments from 24 different studies that assessed the
effects of BPA on cell proliferation (Supplemental Table 2). In some stud-
ies, cell proliferation was unaffected by any concentration of BPA that was
tested (for example (Dominguez et al., 2008)). In other studies, only
monotonic responses were reported for cell proliferation (for example
(Kim et al., 2007; Kochukov et al., 2009; Okada et al., 2008; Park et al.,
2009)). Finally, still other studies reported non-monotonic responses for
cell proliferation (for example (Bouskine et al., 2009; Ricupito et al., 2009;
Sheng and Zhu, 2011; Wu et al., 2012)). Yet, these studies should not be
considered replicates of each other; they typically utilized different cell
types, examined different doses, and utilized different assays to assess cell
proliferation. Similar variability was observed for studies assessing cell via-
bility, release/secretion of hormones, and gene expression, among oth-
ers (Supplemental Table 1). Thus, assumptions that these NMDRCs are
not reproducible is a conclusion that may reflect the diversity of cell lines
and experimental conditions rather than a true assessment of whether a
NMDRC observed in one cell type under specific conditions can be
observed in multiple laboratories.

DISCUSSION

This pilot study examined a small portion of the EDC literature and
concluded that NMDRCs were observed in more than 30% of all studies
and for more than 20% of all experiments in the dataset examined.
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FIGURE 3. Percent of experiments displaying monotonic or non-monotonic responses depend on
experimental design factors. A) Experiments were analyzed based on the number of doses examined
and the percent displaying monotonic and non-monotonic responses is shown. B) Experiments were
analyzed based on the number of different log doses tested and the percent displaying monotonic
and non-monotonic responses is shown. C) Experiments were analyzed based on the range of log
doses examined and the percent displaying monotonic and non-monotonic responses is shown. In
all panels, each group was compared as an ‘observed’ value to the total number of experiments (59
non-monotonic, 191 monotonic; the ‘expected’ value) using a Chi Square test; *p<0.05. 



Although these frequencies are likely to relate specifically to in vitro stud-
ies of BPA rather than to the wider EDC literature, this quantitative analy-
sis provides support for statements that NMDRCs are ‘common’.
Furthermore, these frequencies are similar to what has been reported for
NMDRCs and hormetic responses in the general toxicology literature.
One study, examining a relatively small toxicology database, concluded
that NMDRCs were present in 12-24% of all dose response studies, and
further proposed that this could be an underestimate due to biases
against studies that do not report monotonic responses (Davis and
Svendsgaard, 1994). Other studies report non-monotonic hormetic
responses in more than 20% of toxicology studies (Calabrese and
Baldwin, 2001a; Calabrese and Baldwin, 2001b; Calabrese and Baldwin,
2001c). Thus, our results are consistent with other quantitative assess-
ments of NMDRCs.

Our analysis also indicated that studies that identified NMDRCs
examined more doses, over a wider range of concentrations, compared to
studies that did not observe NMDRCs (Figure 2). This finding supports
the use of a large number of doses, including doses that extend below the
picomolar range, which have been successfully studied in numerous lab-
oratories (see for example (Vinas and Watson, 2013)); experimenters
should continue to investigate the effects of chemicals at these very low
concentrations. There have been claims that reports of NMDRCs are
flawed due to their use of too few doses to make appropriate conclusions
about the shape of the dose response curve, i.e. suggestions that
NMDRCs are simply ‘statistical flukes’ (Rhomberg and Goodman, 2012).
This claim is not supported by data within this dataset; in fact, the data
suggests that some claims of monotonicity may be flawed due to the selec-
tion of too few doses over a too small range of concentrations.

NMDRCs can occur across any point in the range of concentrations
tested, from the true “low dose” range up to the high pharmacological
range. For BPA, there is strong debate over what the “low dose” range
might be, especially because the NTP’s two definitions for low dose (typ-
ical human exposure levels or doses below the NOAEL) are quite diver-
gent (~5μg/kg/day versus 50 mg/kg/day, respectively). For in vitro stud-
ies, the cut-off for a low dose is even more difficult to establish. Wetherill
and colleagues (2007) set the cut-off at 1 x 10-7 M based on calculations
of circulating BPA concentrations in animals administered 50 mg/kg/day
(Vandenberg et al., 2007; Welshons et al., 2006). Others have suggested
that the cut-off should be in the range of 1 x 10-9 M, based on the results
of dozens of biomonitoring studies that measured BPA in human blood
samples in the range of 0.1 – 2 ng/ml (0.4 – 8.8 x 10-9 M) (Vandenberg et
al., 2010). Still other scientists have disputed these biomonitoring studies
and suggest that circulating levels of BPA in humans are in the range of
10-12 M (Dekant and Volkel, 2008; Teeguarden et al., 2012; Ye et al., 2013).
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What is clear from our analysis of the BPA in vitro literature is that bio-
logical effects are observed at all of these low-dose cut-offs, and even
more importantly, that NMDRCs are observed for some endpoints at
doses that include or span these cut-off doses as well.

It has also been suggested that NMDRCs are only relevant if they are
observed for ‘adverse’ endpoints. Although this is not directly relevant to
the current study, as in vitro endpoints are rarely acknowledged to repre-
sent adverse endpoints, there is certainly evidence that effects observed
in in vitro studies are relevant to in vivo endpoints (see for example (Wang
et al., 2012)), and there have been strong recommendations that results
from in vitro studies be considered relevant to effects that are likely to be
observed at other levels of biological organization (Schug et al., 2013).
Furthermore, the development of Tox21, ToxCast, and other high
throughput in vitro assays acknowledges that in vitro cell based assays and
cell-free assays provide important tools that can and should inform chem-
ical risk assessments (Knudsen et al., 2013; Mahadevan et al., 2011). These
assays have many benefits over in vivo tests, including the ability to test
large numbers of doses over a large span of log concentrations, their high
sensitivity and specificity, and their use of state-of-the-art techniques
(Shukla et al., 2010; Sun et al., 2012). In contrast, there is an extensive
ongoing discussion about whether the endpoints examined in traditional
(in vivo) guideline studies are sufficient to capture the effects of EDCs on
reproduction and development, and whether the endpoints in these
assays reflect current knowledge of endocrine toxicity (Zoeller et al.,
2012). There have been calls to expand the endpoints involved in the
assessment of EDCs to include more sensitive endpoints than the ones
currently used (Myers et al., 2009a; Myers et al., 2009b; Vandenberg et al.,
2013a; vom Saal et al., 2007; vom Saal et al., 2010; vom Saal and Myers,
2010).

Importantly, guideline studies – studies that follow internationally
agreed-upon methods to assess toxicity and endocrine disrupting prop-
erties of test chemicals – typically examine only three doses. In some his-
torical assays (i.e. those found in the NTP’s carcinogenesis database),
only two doses of the test chemical were examined. This may be one rea-
son why guideline studies overwhelmingly fail to detect NMDRCs, which
some scientists have interpreted to mean that NMDRCs do not exist in
these studies, or do not exist for the kinds of endpoints assessed in these
studies, which are widely acknowledged to be adverse (Rhomberg and
Goodman, 2012). The presence (or absence) of NMDRCs from guideline
studies is an important issue, as these are the studies that regulators rely
on heavily when making decisions about chemical safety and in setting
“safe” reference doses (Tyl, 2009). Yet analyses of guideline studies indi-
cate that NMDRCs are present, but are often ignored or dismissed as par-
adoxical or irrelevant (Patisaul et al., 2012; Vandenberg et al., 2013a).
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This study was designed to determine the frequency of NMDRCs in a
small portion of the EDC literature, specifically focusing on a single well-
studied EDC. Additional studies are needed to assess the occurrence, fre-
quency, and implicated endpoints for NMDRCs in in vivo studies of BPA
and for other EDCs. NMDRCs have been reported for BPA in a number
of studies of laboratory animals (see for example (Angle et al., 2013;
Ayyanan et al., 2011; Cabaton et al., 2011; Jenkins et al., 2011; Marmugi et
al., 2012; Xu et al., 2010)), but the majority of studies examining rodents
or aquatic animals have used fewer than six doses (Richter et al., 2007;
vom Saal and Hughes, 2005; Welshons et al., 2006), and thus NMDRCs are
likely to be more difficult to observe or detect.

In conclusion, this pilot study of the BPA in vitro literature illustrated
that NMDRCs occur in more than 1/5 of experiments and in more than
1/3 of studies that were appropriately designed to assess dose responses
(i.e. studies that examined more than one dose and identified at least one
endpoint affected by BPA.) This study is a first step toward quantifying
the frequency of NMDRCs in the EDC literature. Global chemical regu-
lation practices rely on an assumption of monotonicity, where it is expect-
ed that high dose testing, coupled with the use of safety factors, can iden-
tify safe dose ranges for humans and wildlife (Fenner-Crisp, 2000; Lucier,
1997; Sheehan and vom Saal, 1997). The presence of NMDRCs chal-
lenges the use of high-to-low dose extrapolations as well as the use of a
threshold model, which proposes that there is a dose below which no
effects of a chemical are observed (Calabrese and Baldwin, 2003; Cook
and Calabrese, 2006; Sheehan, 2006; vom Saal and Sheehan, 1998). This
study provides another step toward challenging the status quo in risk
assessment, indicating that NMDRCs occur frequently enough that they
should not be ignored.
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